PKU 1511 - Invitation Cards (最短路 & Dijkstra)

题意

求起点到每个点的最小费用,来回。

思路

一开始在回来的时候每个点调用了一次Dijkstra,果断TLE。

其实把边反一下就行。

不过我用vector版邻接表跑了5S!难道是大量clear的原因?

邻接表跑了2s,vector的效率简直不忍直视。以后要投奔数组版了

代码

#include <cstdio>
#include <stack>
#include <set>
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <functional>
#include <cstring>
#include <algorithm>
#include <cctype>
#include <ctime>
#include <cstdlib>
#include <fstream>
#include <string>
#include <sstream>
#include <map>
#include <cmath>
#define LL long long
#define SZ(x) (int)x.size()
#define Lowbit(x) ((x) & (-x))
#define MP(a, b) make_pair(a, b)
#define MS(arr, num) memset(arr, num, sizeof(arr))
#define PB push_back
#define F first
#define S second
#define ROP freopen("input.txt", "r", stdin);
#define MID(a, b) (a + ((b - a) >> 1))
#define LC rt << 1, l, mid
#define RC rt << 1|1, mid + 1, r
#define LRT rt << 1
#define RRT rt << 1|1
#define BitCount(x) __builtin_popcount(x)
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
using namespace std;
const int MAXN = 1e6 + 10;
const int MOD = 1e9 + 7;
const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
 
typedef pair<int, int> pii;
typedef vector<int>::iterator viti;
typedef vector<pii>::iterator vitii;
 
struct EDGE
{
    int from, to, cost;
};
 
struct HEAPNODE
{
    int d, u;
    bool operator < (const HEAPNODE &a) const
    {
        return d > a.d;
    }
};
 
struct S_PATH
{
    int N, d[MAXN];
    vector<int> G[MAXN];
    vector<EDGE> edges;
 
    void add_edge(int from, int to, int cost)
    {
        edges.PB((EDGE){from, to, cost});
        G[from].PB(SZ(edges) - 1);
    }
 
    void init(int N)
    {
        this->N = N;
        for (int i = 0; i <= N; i++) G[i].clear();
        edges.clear();
    }
 
    void dijkstra(int st, int ed)
    {
        priority_queue<HEAPNODE> pqu;
        fill(d, d + N + 1, INF);
        d[st] = 0;
        pqu.push((HEAPNODE){d[st], st});
        while (!pqu.empty())
        {
            HEAPNODE x = pqu.top(); pqu.pop();
            int u = x.u;
            if (x.d != d[u]) continue;
            for (int i = 0; i < SZ(G[u]); i++)
            {
                EDGE &e = edges[G[u][i]];
                if (d[e.to] > d[u] + e.cost)
                {
                    d[e.to] = d[u] + e.cost;
                    pqu.push((HEAPNODE){d[e.to], e.to});
                }
            }
        }
    }
}s;
 
int u[MAXN], v[MAXN], c[MAXN];
 
int main()
{
    //ROP;
    int T, i, j;
    scanf("%d", &T);
    while (T--)
    {
        int nstop, n;
        scanf("%d%d", &nstop, &n);
        s.init(nstop + 1);
        for (i = 0; i < n; i++)
        {
            int from, to, cost;
            scanf("%d%d%d", &u[i], &v[i], &c[i]);
            s.add_edge(u[i], v[i], c[i]);
        }
        LL fee = 0;
        s.dijkstra(1, nstop);
        for (i = 2; i <= nstop; i++) fee += s.d[i];
        s.init(nstop);
        for (i = 0; i < n; i++) s.add_edge(v[i], u[i], c[i]);
        s.dijkstra(1, nstop);
        for (i = 2; i <= nstop; i++) fee += (LL)s.d[i];
        printf("%lld\n", fee);
    }
    return 0;
}

Powered by Jekyll and Theme by solid