PKU 1061 - 青蛙的约会 (扩展欧几里得)

思路

了解了一下扩展欧几里得。。

设经过的时间为t。

$ (X + mt) - (Y + nt) = kL$,化简得$(n - m)t + Ly = X - Y$,符合$ax+by=c$的形式,可以用扩展欧几里得解出$ax+by=gcd(a, b)$的时候的一个解$x_0$。

两边同时乘以$\frac{c}{d}$,可得一个解x。

但是这时候的x可能是负数,因为通解为$x + k* \frac{b} {g}$,所以对$\frac{b}{g}$取余就行

代码

#include <stack> #include <cstdio> #include <list> #include <set> #include <iostream> #include <string> #include <vector> #include <queue> #include <functional> #include <cstring> #include <algorithm> #include <cctype> #include <string> #include <map> #include <cmath> using namespace std; #define LL long long #define ULL unsigned long long #define SZ(x) (int)x.size() #define Lowbit(x) ((x) & (-x)) #define MP(a, b) make_pair(a, b) #define MS(arr, num) memset(arr, num, sizeof(arr)) #define PB push_back #define X first #define Y second #define ROP freopen("input.txt", "r", stdin); #define MID(a, b) (a + ((b - a) >> 1)) #define LC rt << 1, l, mid #define RC rt << 1|1, mid + 1, r #define LRT rt << 1#define RRT rt << 1|1 #define BitCount(x) __builtin_popcount(x) #define BitCountll(x) __builtin_popcountll(x) #define LeftPos(x) 32 - __builtin_clz(x) - 1 #define LeftPosll(x) 64 - __builtin_clzll(x) - 1const double PI = acos(-1.0); const int INF = 0x3f3f3f3f; const double eps = 1e-8; const int MAXN = 4e5 + 10;const int MOD = 1000007; const int dir[][2] = { {1, 0}, {0, 1} };int cases = 0;typedef pair<int, int> pii; typedef vector<int>::iterator viti; typedef vector<pii>::iterator vitii; void gcd(LL a, LL b, LL &g, LL &x, LL &y){ if (!b) { g = a; x = 1; y = 0; } else { gcd(b, a%b, g, y, x); y -= x * (a/b); }} int main(){ LL X, Y, m, n, L; while (cin >> X >> Y >> m >> n >> L) { LL g, x, y; LL b = L; gcd(n-m, L, g, x, y); cout << x << endl; cout << y << endl; if ((X-Y) % g != 0) cout << "Impossible" << endl; else { LL p = b / g; x = (X-Y) / g * x; cout << (x % p + p) % p << endl; } } return 0;}

Powered by Jekyll and Theme by solid