PKU 1811 - Prime Test (大素数测试和因数分解)

思路

两个模板

代码

#include <stack>
#include <cstdio>
#include <list>
#include <set>
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <functional>
#include <cstring>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#include <cmath>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define SZ(x) (int)x.size()
#define Lowbit(x) ((x) & (-x))
#define MP(a, b) make_pair(a, b)
#define MS(arr, num) memset(arr, num, sizeof(arr))
#define PB push_back
#define X first
#define Y second
#define ROP freopen("input.txt", "r", stdin);
#define MID(a, b) (a + ((b - a) >> 1))
#define LC rt << 1, l, mid
#define RC rt << 1|1, mid + 1, r
#define LRT rt << 1
#define RRT rt << 1|1
#define BitCount(x) __builtin_popcount(x)
#define BitCountll(x) __builtin_popcountll(x)
#define LeftPos(x) 32 - __builtin_clz(x) - 1
#define LeftPosll(x) 64 - __builtin_clzll(x) - 1
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const double eps = 1e-8;
const int MAXN = 1e6 + 10;
const int MOD = 1000007;
const int dir[][2] = { {1, 0}, {0, 1} };
int cases = 0;
typedef pair<int, int> pii;
typedef vector<int>::iterator viti;
typedef vector<pii>::iterator vitii;
 
set<LL> fac;
 
LL multi(LL a, LL b, LL m)
{
    LL ans = 0;
    a %= m;
    while(b)
    {
        if(b & 1)
        {
            ans = (ans + a) % m;
            b--;
        }
        b >>= 1;
        a = (a + a) % m;
    }
    return ans;
}
 
LL quick_mod(LL a, LL b, LL m)
{
    LL ans = 1;
    a %= m;
    while(b)
    {
        if(b & 1)
        {
            ans = multi(ans, a, m);
            b--;
        }
        b >>= 1;
        a = multi(a, a, m);
    }
    return ans;
}
 
bool Miller_Rabin(LL n)
{
    if(n == 2) return true;
    if(n < 2 || !(n & 1)) return false;
    LL m = n - 1;
    int k = 0;
    while((m & 1) == 0)
    {
        k++;
        m >>= 1;
    }
    for(int i=0; i<10; i++)
    {
        LL a = rand() % (n - 1) + 1;
        LL x = quick_mod(a, m, n);
        LL y = 0;
        for(int j=0; j<k; j++)
        {
            y = multi(x, x, n);
            if(y == 1 && x != 1 && x != n - 1) return false;
            x = y;
        }
        if(y != 1) return false;
    }
    return true;
}
 
LL pollard_rho(LL n, LL c)
{
    LL i = 1, k = 2;
    LL x = rand() % (n - 1) + 1;
    LL y = x;
    while(true)
    {
        i++;
        x = (multi(x, x, n) + c) % n;
        LL d = __gcd((y - x + n) % n, n);
        if(1 < d && d < n) return d;
        if(y == x) return n;
        if(i == k)
        {
            y = x;
            k <<= 1;
        }
    }
}
 
bool Find(LL n, int c)          //如果是素数返回false
{
    if(n == 1) return false;
    if(Miller_Rabin(n))
    {
        fac.insert(n);
        return false;
    }
    LL p = n;
    LL k = c;
    while(p >= n) p = pollard_rho(p, c--);
    Find(p, k);
    Find(n / p, k);
    return true;
}
 
int main()
{
    LL n;
    int T;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%lld", &n);
        fac.clear();
        if (Find(n, 120)) printf("%d\n", *fac.begin());
        else puts("Prime");
    }
    return 0;
}

Powered by Jekyll and Theme by solid