SDUT 2879 - Colorful Cupcakes (DP)
题意
给出ABC三种颜色的个数,求相邻颜色不相同,首尾颜色不相同的串的个数。
思路
$dp[i][a][b][k]$表示前i个位置A有a个B有b个,当前位置颜色是k的个数。
假设当前颜色是红色,也就是0(自己定)
$dp[i][a][b][k] = \sum dp[i-1][a-1][b][ii], \text{ ii = 1,2,3. ii != k}$,ii是上一个位置的颜色,不能和k相同。
代码
#include <stack>
#include <cstdio>
#include <list>
#include <set>
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <functional>
#include <cstring>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#include <cmath>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define SZ(x) (int)x.size()
#define Lowbit(x) ((x) & (-x))
#define MP(a, b) make_pair(a, b)
#define MS(arr, num) memset(arr, num, sizeof(arr))
#define PB push_back
#define X first
#define Y second
#define ROP freopen("input.txt", "r", stdin);
#define MID(a, b) (a + ((b - a) >> 1))
#define LC rt << 1, l, mid
#define RC rt << 1|1, mid + 1, r
#define LRT rt << 1
#define RRT rt << 1|1
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const double eps = 1e-8;
const int MAXN = 50 + 3;
const int MOD = 1e9 + 7;
const int dir[][2] = { {-1, 0}, {0, -1}, { 1, 0 }, { 0, 1 } };
int cases = 0;
typedef pair<int, int> pii;
int dp[MAXN][MAXN][MAXN][3];
int DFS(int pre, int a, int b, int k, int last)
{ //前pre位有a个红色b个绿色,此位是k颜色的个数
if (dp[pre][a][b][k] != -1) return dp[pre][a][b][k];
if (a < 0 || b < 0 || pre-a-b < 0) return 0;
if (pre == 1 && k == last) return 0; //如果第一位和最后一位相同,0种情况
if (pre == 1) return ((a && k == 0) || (b && k == 1) || (pre-a-b && k == 2));
//有可能出现第一位本来已经没多余的某种颜色了,却能走到这一步。排除
//因为枚举前一位是什么颜色的时候并没考虑那种颜色还有没有剩余
int ans = 0;
for (int ii = 0; ii < 3; ii++) //前一位是什么颜色
{
if (k == ii) continue;
if (k == 0) ans = (ans + DFS(pre-1, a-1, b, ii, last)) % MOD;
if (k == 1) ans = (ans + DFS(pre-1, a, b-1, ii, last)) % MOD;
if (k == 2) ans = (ans + DFS(pre-1, a, b, ii, last)) % MOD;
}
return dp[pre][a][b][k] = ans;
}
char str[100];
int cnt[3];
int main()
{
//ROP;
int T;
scanf("%d", &T);
while (T--)
{
scanf("%s", str);
MS(dp, -1); MS(cnt, 0);
int len = strlen(str);
for (int i = 0; i < len; i++) cnt[str[i]-'A']++;
int ans = 0;
for (int i = 0; i < 3; i++) //最后一位是什么颜色
{
MS(dp, -1);
ans = (ans + DFS(len, cnt[0], cnt[1], i, i)) % MOD;
}
printf("%d\n", ans);
}
return 0;
}